# Solar Thermal Systems for Residential Homes

Lingying Zhao, Professor Braydi McPherson, Student Assistant

Dept. of Food, Agricultural and Biological Engineering
The Ohio State University





#### Questions:

- What are solar thermal systems?
- ➤ Why solar thermal?
- How effective and feasible that the solar thermal systems are?
- How much do they cost and what are the payback periods?
- How to select solar thermal systems?



## What are Solar Thermal System?

Systems to collect, storage, and transfer solar energy as heat energy for spacing conditioning and hot water.



## Why Solar Thermal?

- High energy conversion efficiency
  - Solar Thermal: 70% 90%
  - Solar Photovoltaics: 10% 20%
- Shorter Payback
  - Solar Thermal: 3 6 years
  - Solar Photovoltaics: 5 15 years
- Reduces needs for other heating systems
  - Saves energy and money



- Solar thermal energy fundamentals
- Passive solar heating
- **♦** Active solar thermal systems:
  - ♦ Solar hot air system for pace heating and dehumidification
  - ♦ Solar hot water system
- Applications and products
- OSU research on solar heating and humidification systems.

#### Sun and earth

Solar constant:

average solar radiation energy reaching the outside of earth's atmosphere <del>---433</del> Btu/hr.ft<sup>2</sup>.



Source: http://songkle1.blogspot.com/2015/12/how-to-use-earth-rotation-around-sun-to.html

### Atmospheric effects on solar radiation



Source: http://www.slideshare.net/NaginaNighat/atmosphere-amp-surface-energy-balance



#### Atmospheric effects on solar radiation



Fig 7. Atmospheric effects on solar radiation.



#### Total solar radiation



- Solar Constant = Solar flux density at edge of earth's atmosphere
  - $= 433 \text{ Btu/h-ft}^2$
- Total solar energy reaching earth's surface

$$= E_t (Btu/hr-ft^2) = E_{DN} \cos \theta + E_d + E_r$$

Where:  $E_{DN} = Direct normal (perpendicular) radiation$ 

 $\theta$  = angle of incidence (angle between incoming rays and line normal to surface receptor)

 $E_d$ = Diffuse radiation from sky

 $E_r$  = Reflected radiation from adjacent surfaces

## Solar collector position

Collector title angle:  $(\beta)$ 

- Equal to the latitude-most consistent energy collection
- Latitude angle (~40° for Ohic
- +/- 15° for winter and summer



Fig 5. Solar angle of incidence on south-facing surface.



## Typical Solar Thermal Systems

- Solar thermal systems
  - Passive solar systems
  - Active solar systems
    - Solar water heating
    - Solar space heating



Source: nssdc.gsfc.nasa.gov

#### Solar Heating Systems--Passive

Heat is transferred by natural convection, conduction, and radiation without pump or fan power.





Fig 19. Passive solar heating by direct gain.

#### Passive Solar Heating Systems



Fig 18. Passive solar heating with a Trombe wall.

Source: http://www.iklimnet.com/save/passive\_solar\_heating.html



- Heat a fluid in order to provide hot water or space heating
- Uses mechanical systems
- Generally includes thermal mass to store heat



Source:

http://www.daviddarling.info/encyclopedia/A/AE\_active\_solar\_energy\_system.html

#### Active Solar - Flat Plate Collector

A typical flat-plate collector is an insulated metal box with a glass or plastic cover, a darkcolored absorber plate, and flow tube for heat transfer fluid.

 heat liquid or air at temperatures less than 180°F.





Source: http://www.alternative-energy-tutorials.com/

# Active Solar-Integral collector storage systems (ICS)

- "Batch" or "bread box" water heating systems
- Heat tubes are much larger
  - Collect and store
- No pumps or sensors
- Issues in colder climates





## Active Solar— Evacuated tube solar collectors

- Parallel rows of transparent glass tubes. Each tube contains a glass outer tube and metal absorber tube attached to a fin. The fin is covered with a coating that absorbs solar energy well, but which inhibits radiative heat loss.
- Air is removed, or evacuated, from the space between the two glass tubes to form a vacuum, which eliminates conductive and convective heat loss.
- Most efficient, more expensive, and low weight
- Vacuum space in external tubes
  - Decreased heat loss from tubes
- Rounded tubes increase efficiency





## Active Solar Storage

Water systems: transfer heat directly to water



Source: Department of Climate Change and Energy Efficiency of Australia

 Store energy in phase changing materials



Source: www.rgees.com

## How it works Pump station Heated solution Cold solution For optimum performance, VELUX solar collectors should be placed Heated water on a shadow-free, south-facing roof with a pitch greater then 3/12. Cold water



### Application - Costs

Vary based on type of system and capacity

- 1 gallon of hot water =  $1 \text{ ft}^2 \text{ collector area}$
- Incentives can reduce initial cost up to 75% depending on location
  - http://www.dsireusa.org/



## Application - Costs

#### Breakdown of Costs and Benefits for Residential Solar Thermal System in NC

| Cost of System (eligible for tax incentives) | \$7,100    | 100% |
|----------------------------------------------|------------|------|
| 35% NC tax credit (\$1,400 maximum)          | - \$1, 400 | 20%  |
| 30% Federal tax credit (\$2,000 maximum)     | - \$2,000  | 28%  |
| Impact of state credit on federal taxes      | + \$392    | 6%   |
| Estimated Net Cost of System                 | \$4,092    | 58%  |

Source: NC Public Power



## Application - Costs

| Example: 2-collector system                                | Electric     | Natural Gas  |
|------------------------------------------------------------|--------------|--------------|
| System cost                                                | \$7,100      | \$7,100      |
| Utility rate                                               | \$.11/kWh    | \$1.48/therm |
| Efficiency of existing system:*                            | 90%          | 60%          |
| Solar energy produced:                                     | 3,664 kWh/yr | 125 therms   |
| Actual energy saved (solar energy / efficiency of system): | 4,071 kWh/yr | 208 therms   |
| Total \$ savings (year 1):                                 | \$448        | \$308        |
| Net tax benefits:                                          | \$3,008      | \$3,008      |
| Payback:**                                                 | Year 9       | Year 10      |

<sup>\*</sup> based on ACEEE data- http://www.aceee.org/consumerguide/waterheating.htm

<sup>\*\*</sup>using a 4% utility escalation rate for electricity and a 9% rate for natural gas

## Cost Examples: Dovetail – Solar and Wind in Ohio

| Solar Thermal Water Heating Systems   |                                                                       |              |            |  |
|---------------------------------------|-----------------------------------------------------------------------|--------------|------------|--|
| Number of people                      | One - Two                                                             | Three - Four | Five - Six |  |
| OG-300 Clear Day C Performance Rating |                                                                       |              |            |  |
| BTU/day                               | 37,000                                                                | 74,000       | 92,000     |  |
| System Components                     |                                                                       |              |            |  |
| Solar Collectors                      | 1 GOBI 408                                                            | 2 GOBI 408   | 2 GOBI 410 |  |
| Water tank (gallons)                  | 80                                                                    | 120          | 120        |  |
| Balance of System                     | Rack kit, Valves, Pumps, Thermostats, Dyn-o-flo solar collector fluid |              |            |  |
| Estimated Total Installed Cost        |                                                                       |              |            |  |
| Installed Price                       | \$8,750                                                               | \$9,850      | \$10,700   |  |

http://www.dovetailsolar.com/

| Solar Thermal Air/Water Heating Systems |                                                                       |                        |                       |  |
|-----------------------------------------|-----------------------------------------------------------------------|------------------------|-----------------------|--|
| Number of people                        | One - Two                                                             | Three - Four           | Five - Six            |  |
| OG-300 Clear Day C Performance Rating   |                                                                       |                        |                       |  |
| BTU/day                                 | 48,000                                                                | 72,000                 | 96,000                |  |
| System Components                       |                                                                       |                        |                       |  |
| Solar Collectors                        | Two Northern Comfort 4'x8'                                            | Three Northern Comfort | Four Northern Comfort |  |
| Water tank                              | 80                                                                    | 120                    | 120                   |  |
| Balance of system                       | Heat exchangers, ductwork, pumps, controllers, valves, rack kit, etc. |                        |                       |  |
| Estimated Total Installed Cost          |                                                                       |                        |                       |  |
| Installed Price                         | \$9,800                                                               | \$11,300               | \$12,500              |  |

#### Dovetail - Solar and Wind in Ohio



Alliance, OH

• Estimated cost: \$10,000



Athens, OH

■48 square foot system

■Estimated cost: \$10,000

Image Source: http://www.dovetailsolar.com/



### Example – Hot Air Collector



SolarSheat 1000GS Solar Fan Assembly

— Heats Up To 400 Sq. Ft., 1,650 BTU

Output/Hr., Model# 1251

Source: http://www.northerntool.com/



### Example – Hot Air Collector



SolarSheat 1500GS Solar Space Heating Air Collector — 2-Pack, 1,500 Sq. Ft. Capacity

Source: http://www.northerntool.com/



### Example – Hot Water Collector



30 Tube Duda Solar Water Heater Collector 37° Frame Evacuated Vacuum Tubes SRCC Certified Hot

by Duda Solar

★★★★ 1 customer review | 17 answered questions

List Price: \$2,275.50

Price: \$1,230.00 & FREE Shipping

You Save: \$1,045.50 (46%)

i Item is eligible: No interest if paid in full within 12 months with the Amazon.com Store Card. Apply now

In Stock

Estimated Delivery Date: April 29 - May 4 when you choose Standard at checkout. Ships from and sold by Duda Energy.

- Hailstone Resistance: up to φmm (1"), Max Operating Pressure: 87psi, Max Flow Rate: 5.25 gpm
- 14mm TU1 Copper Heat Pipes, Manifold insulation: 45mm 93 Kg/m3 Rockwool, Rated Best Heat Retention
- φ58mm x 1800mm Three-Target Cu/SS-ALN(H)/SS-ALN(L)/ALN Vacuum Tubes, High Boron Silicon 3.3 Glass
- Sun Absorption Efficiency: 93-96%, Vacuum Rating: Less than 5.0 x 10-3Pa, Lifespan: 70% @ 15 Years
- OG-100 SRCC Certificate Number: 10001880, Eligible for 30% Federal Tax Rebate, Winter Resistant
- See more product details

Improve your home this spring
Up to 60% off featured deals
>Learn more

http://www.amazon.com/Duda-Solar-Collector-Evacuated-Certified/dp/B003SVNY88



## Examples of Thermal Storage



Source: http://www.homedepot.com/





#### OSU Research on Solar HVAC





#### Summary

- Solar energy collectors are advancing dramatically. Applications of solar energy system become feasible.
- Solar thermal systems efficiently using sun power.
- The payback period is short.
- Hybrid and innovative solar systems are needed for residential houses to meet various space conditioning and water heating needs.

